
Executing Engineering Pipelines on Exascale Systems

Lubomír Říha, Tomáš Brzobohatý and Jan Martinovič

Scientific Pipelines for Exascale

Vision

Combination of …

Scientific Pipelines for Exascale

ESPRESO

Vision

Combination of petascale application and …

Vision

Combination of petascale application and optimal scheduler for optimal utilization of Exascale machine.

Scientific Pipelines for Exascale

H perLoom
ESPRESO

• ESPRESO vision is to create complex, free of charge, open
source finite element tool designed from scratch for HPC
environment

• More generally applicable than standard open source FEM
codes for real industrial problems

• Connection to popular commercial codes (ANSYS) and other
open source tools such as OpenFOAM and ELMER

• Contain highly scalable solvers capable to run on today’s most
powerful supercomputers

• “Solver as a Service” – connection to the IT4I HPC–as-a-Service
infrastructure

Part 1 – Petascale Application ESPRESO

Combine it together! You obtain fast preprocessing and possibilities to solve large problems
on hundreds of thousand of cores.

Commercial tools
• No source code

• Robust and complex pre-processing with GUI
interface

• Limited number of users/cores

• Commercial licenses are very expensive for
HPC infrastructures

Open source tools
• Source code available for easy customization

• without complex GUI interface but simplest
expandability and solver control

• Unlimited number of users/cores

• Optimized solver for HPC infrastructures

ESPRESO Massively Parallel Framework for Engineering Applications

FEM/BEM framework for massively parallel machines with focus on parallel mesh pre-processing, physical
solvers, non/linear solvers and post-processing.

ESPRESO Massively Parallel Framework for Engineering Applications

Parallel Mesh Processing

Multiphysical
FEM/BEM (BEM4I)

TFETI/Hybrid TFETI Solvers
ESPRESO

Generator

ESPRESO API

Visualization

Paraview
CatalystCPU

Preprocessing PostprocessingESPRESO C++ library

MIC GPU

Visit

OpenFOAM EnSight

Load steps definition for combination of multiple steady-state
and time dependent analyses

Transient solvers
• Generalized trapezoidal rule
• Automatic time stepping based

on response frequency approach

Nonlinear solvers
• Newton Raphson – full and symmetric
• Newton Raphson with constant tangent matrices
• Line search damping
• Sub-steps definition
• Adaptive precision control for iterative solvers

Linear and quadratic finite element discretization

Gluing nonmatching grids by
mortar discretization techniques

Complex material models
• nonlinear materials
• isotropic, orthotropic and anisotropic material models
• materials for phase change

Element coordinate system definition – cartesian, polar and
spherical

Temperature and time dependent boundary conditions
• linear convection
• nonlinear convection
• heat flow
• heat flux
• diffuse radiation
• heat source
• translation motion

Consistent SUPG and CAU stabilization for Translation Motion
(advection), Inconsistent stabilization

Phase Change based on apparent heat capacity method

Boundary element discretization for selected physical
applications

Highly parallel multilevel FETI domain decomposition based
solver for billions of unknowns for symmetric and non-
symmetric systems with accelerators support and combination
of MPI and OpenMP techniques
Asynchronous parallel I/O

Mesh processing - Domain Decomposition based on
combination of the in house space filling curves algorithm and
Metis/ParMetis - material separation- region separation,
RBF - Radial Basis Function mesh morphing for shape
optimization

Input mesh format from popular open source and commercial
packages like OpenFOAM, ELMER or ANSYS

Output to commonly used post-processing formats, VTK and
EnSight

Monitoring results on selected regions for statistic and
optimization toolchain

Simple text Espreso Configuration File (ecf) for setting all
ESPRESO FEM solver parameters without GUI. Control each
parameter in ecf file from command line

Heat Transfer Module Capability List:

Response time optimization
of the USL sensor

ESPRESO Massively Parallel Framework for Engineering Applications

21,3 22,9 24,2 24,4 26,8 30,0 30,8 34,6
46,6 46,8 46,8 47,0 52,0 47,2 53,3 53,8

593,8

31 iters
@

18.0s

586,1

31 iters
@

17.8s

584,6

31 iters
@

17.8s

583,6

31 iters
@

17.7s

546,2

29 ters
@

17.7.s

604,8

29 iters
@

19.5s

543,1

29 iters
@

17.8s

541,1

29 iters
@

17.5s

0

100

200

300

400

500

600

700

0.8 2.7 6.5 12.7 27.9 52.0 101.6 223.1

64 216 512 1000 2197 4096 8000 17576

H
TF

ET
I S

ol
ve

r r
un

tim
e

[s
]

FETI preprocessing [s] HTFETI preprocessing [s] CG Solver runtime [s]

Up to 223 billion DOF on 17576 Compute Nodes (281 216 cores)
Heat transfer (Laplace equation)

Weak Scalability Test

Problem size [billion DOF]
Number of compute nodes [-]

18,688 AMD Opteron 6274 16-core CPUs
18,688 NVIDIA Tesla K20X GPUs

2.7 million core hours dedicated to:
• scalability optimization of ESPRESO
• optimization of GPU accelerated version for large scale

problems

5th in TOP500 LIST

ESPRESO Massively Parallel Framework for Engineering Applications

ESPRESO Library

222

136

83

59

39

29

22

16

32

64

128

256

2 400 4 800 9 600 19 200

H
yb

rid
 T

FE
TI

 s
pa

rs
e

lin
ea

r s
ol

ve
r r

un
tim

e
[s

]

Number of compute nodes

20 billion DOF on up to 17 576 Compute Nodes (281 216 cores)
3D heat transfer

ORNL Titan 5th in TOP500 LIST

ESPRESO Massively Parallel Framework for Engineering Applications

32

64

128

256

512

1024

16 32 64 128 256 512
To

ta
l s

ol
ve

r r
un

tim
e

[s
]

Number of CPU cores

TFETI with Dirichlet
preconditioner
HTFETI with dirichlet
preconditioner

300 million unknown - ANSYS Workbench real world problem
Linear elasticity – Hybrid FETI with Dirichlet preconditioner

IT4Innovations – SALOMON Supercomputer

Total FETI solver

Hybrid TFETI solver

Strong scalability of Hybrid TFETI solvers

Hardware Acceleration of FETI solvers
Local Schur Complement (LSC) Method

Pre-processing – K factorization
1.) ! = #$% & ' - SpMV
2.) (=)*$ & ! - solve
3.) ' = #$ & (- SpMV
4.) stencil data exchange in '

- MPI – Send and Recv
- OpenMP – shared mem. vec

Pre-processing - +, = #$)*$#$% →MIC
1.) ' →MIC - PCIe transfer from CPU
2.) ' = +, & ' - DGEMV, DSYMV on MIC
3.) ' ←MIC - PCIe transfer to CPU
4.) stencil data exchange in '

- MPI – Send and Recv
- OpenMP – shared mem. vec CPU (24 th.) 2x60 2x120 2x240

0

50

100

150

200

250

300

Symmetric

Configuraion

Ite
ra

tiv
e

so
lv

er
 ti

m
e

[s
]

Number of subdomains: 1331
Stiffness matrix sizes: 2187 x 2187
Symmetric: 16.2 GB
Number of iterations: 500

2.4 speedup

2x
CPU

So
lv

er
 ti

m
e

[s
]

2x CPU 2x Xeon Phi

ESPRESO Massively Parallel Framework for Engineering Applications

Algorithm modification:

Converting sparse data
structures to dense for optimal

hardware utilization

Performance of LSC Method - Heat Transfer problem
Solver Problem size and decomposition Solve time[s] Speedup by LSC method

number of
subdomains [-]

Subdomain size
[DOF]

PARDISO
CPU only

CPU
only

KNC
&

CPU*
KNL only

K80
&

CPU*

P100
&

CPU*

Total FETI 512 6859 21.4 1.3 2.1 2.2 1.5 4.0

Hybrid Total FETI 512 6859 26.0 1.2 2.4 2.5 1.6 3.5

* Note:
CPU does
not process
LSCs

ESPRESO Massively Parallel Framework for Engineering Applications

Processor/Accelerator Number of cores Peak floating point performance SP/DP [GFLOPS] Memory bandwidth [GB/s] Memory type

Intel Xeon E5-2680v3 12 960/480 68 DDR4

Intel Xeon Phi 7120p 61 2420/1210 180 (352*) GDDR5

Intel Xeon Phi 7210 64 5325/2662 102 /400 DDR4/MCDRAM

NVIDIA Tesla K80 (1 chip) 1597 SP/533 DP 4365/1455 240 GDDR5

NVIDIA Tesla K20X (Titan) 2688 SP / 896 DP 3950/1310 250 GDDR5

NVIDIA Tesla P100 (PCIe) 3584 SP / 1792 DP 8345/4217 720 HBM2

Hardware Acceleration of FETI solvers

ESPRESO Massively Parallel Framework for Engineering Applications

Full nonlinear transient simulation with adaptive time stepping

128

256

512

1024

2048

96 192 384 768 1536

To
ta

ls
im

ul
at

io
n

ti
m

e
[s

ec
]

Number of CPU cores

FETI for transient problem without projector
FETI for transient problem with optimized Conjugate projector

Single and Adaptive Design of Experiment
Response time optimization, optimization of material parameters,
mesh morphing for shape optimization without remeshing

Leads to tens of simulations - Response surface in few minutes

mesh generated in ANSYS - solved by ESPRESO
Still is possible to decrease the computational time by hardware optimization
of the nonlinear steps, matrix assembler vectorization

260

295

330

365

400

0 10 20 30 40

Te
m

pe
ra

tu
re

 [K
]

Response time [s]

ESPRESO Massively Parallel Framework for Engineering Applications

Single and adaptive design of experiment - Leads to tens of simulations - response surface in few minutes

Create samples

Mesh
Morphing

Material
parameters

Boundary
Conditions

From Petascale to Exascale

Response surface

New adaptive sampling step

A Platform for Defining and Executing Scientific Pipelines
in Distributed Environments

● high performance end-to-end data processing made simple
● initial motivation: chemogenomics for novel drug discovery

Part 2 – Scheduler for Scientific Pipelines

This project has received funding from the European Union's Horizon 2020 Research and Innovation
programme under Grant Agreement no. 671555

• Platform for defining and executing workflow pipelines in large-scale distributed
environments

• Implements its own scheduling algorithm optimized for execution of millions of
interconnected tasks on hundreds of computational nodes

• Thin Python client module that allows to easily define and execute the pipelines

• Research poster about HyperLoom has been accepted at supercomputing SC17
conference
• Has been selected as one of the 9 Best Poster Candidates

BSD license - https://HyperLoom.eu

HyperLoom - Task Distribution Framework

https://hyperloom.eu/

import loom.client as lc
tasks = []
for i in range(9):

t = lc.tasks.run("/bin/hostname")
tasks.append(t)

merged_hostnames = lc.tasks.merge(tasks)

client = lc.Client("localhost", 9010)
future = client.submit_one(merged_hostnames)
result = future.gather()

Python

Data Processing Pipeline (DAG)

client server worker

worker

worker

C++

results

HyperLoom - Task Distribution Framework

LORE profiler

HPC as a Service

Anselm

Salomon

HPC as a Service & HyperLoom

Anselm

Salomon

HPC as a Service & HyperLoom

Anselm

Salomon

Solver as a Service & HyperLoom

Anselm

Salomon

Thank you

